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1.  Show that the local mass balance equation 
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can be re-written in spatial form as  
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Note that  
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and substitute into the first equation.   Expanding out the derivative of the product in the second equation 
shows that the two expressions are equivalent. 

 

2. The stress field 
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represents the stress in an infinite, incompressible linear elastic solid that is subjected to a point force with 

components kP  acting at the origin (you can visualize a point force as a very large body force which is 

concentrated in a very small region around the origin). 

(a) Verify that the stress field is in static equilibrium 
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(except at the origin) 
 

(b) Consider a spherical region of material centered at the origin.  This region is subjected to (1) the 

body force acting at the origin; and (2) a force exerted by the stress field on the outer surface of 
the sphere.   Calculate the resultant force exerted on the outer surface of the sphere by the stress, 

and show that it is equal in magnitude and opposite in direction to the body force. 

 

The traction acting on the exterior surface is /ij i i in n y R  .   The resultant force is thus 
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The integral clearly vanishes for k j  by symmetry.   Choosing k=j=3 without loss of generality we can 

evaluate the remaining integral in spherical-polar coordinates as 



 
2 2

2
3 3 33

0 0

cos3
sin

4

R
F P R d d P

R

 


  



     

 

 
3.  The figure shows a test designed to measure the viscosity of a 

fluid.  The sample is a hollow cylinder with internal radius 
0a  and 

external radius 
1a .  The inside diameter is bonded to a fixed rigid 

cylinder.  The external diameter is bonded inside a rigid tube, which 

is rotated with angular velocity ( )t .  Assume that all material 

particles in the specimen (green) move circumferentially, with a 

velocity field (in spatial coordinates) ( , )v r t v e . 

 
(a) Calculate the spatial velocity gradient L in the basis 

{ , , }r ze e e and hence deduce the stretch rate tensor D. 

 

The gradient operator for cylindrical-polar coordinates is (in 2D) 
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(b) Calculate the acceleration field 

The acceleration is 
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(c) Suppose that the specimen is homogeneous, has mass density  , and may be idealized as a viscous 

fluid, in which the Kirchhoff stress is related to stretch rate by 

2 ( , )p r t τ D I  

where p is a hydrostatic pressure (to be determined) and   is the viscosity.  Use this to write down 

an expression for the Cauchy stress tensor in terms of p, expressing your answer as components in 

{ , , }r ze e e  

 

Substituting for the stretch rate, we see that 
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(d) Assume steady deformation.  Express the equations of equilibrium in terms of ( , )v r t . 

 

The equilibrium equation is 0 τ , which reduces to 
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(e) Solve the equilibrium equation, together with appropriate boundary conditions, to calculate ( , )v r t , 

and p(r).    (The pressure can only be determined to within an arbitrary constant). 

 

The tangential equilibrium equation can be re-written as  
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integrated to see that 
B

v Ar
r

   .   The boundary conditions are 0 1 10v r a v a r a       

These two equations can be solved for A,B, with the result 
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can also be easily done in maple or mathematica…) 

 

The pressure field can be computed from 
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Here, 0p  is the pressure at 0r a . 

 
(f) Find an expression for the torque (per unit out of plane distance) necessary to rotate the external 

cylinder 

 

The torque is 
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(g) Calculate the rate of external work done by the torque acting on the rotating exterior cylinder 

 

The rate of work is 
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(h) Calculate the rate of internal dissipation in the solid as a function of r. 
 

The dissipation rate is 
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(i) Show that the total internal dissipation is equal to the rate of work done by the external moment. 



 

Calculating 
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4.  A solid with volume V is subjected to a distribution of traction it  on its surface. Assume that the solid 

is in static equilibrium (this requires that it  exerts no resultant force or moment on the boundary). By 

considering a virtual velocity of the form i ij jv A y  , where ijA  is a constant tensor, use the principle of 

virtual work to show that the average stress in a solid can be computed from the shape of the solid and the 
tractions acting on its surface using the expression 
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The virtual work principle gives 
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This must hold for all ijA  which shows the required result. 

 

 
5. The shell shown in the figure is subjected to a radial body force 

( ) Rb Rb e , and a radial pressure ,a bp p  acting on the surfaces 

at R a  and R b . The loading induces a spherically symmetric 

state of stress in the shell, which can be expressed in terms of its 

components in a spherical-polar coordinate system as 
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velocity of the form ( ) Rw R v e , show that the stress state is in 

static equilibrium if 
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for all w(R).  Hence, show that the stress state must satisfy 
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For a spherically symmetric state the stretch rate is  R R
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The virtual work principle therefore reduces to 
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Integrating the first term by parts gives 
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This must vanish for all w, which gives the required solution. 

 

6. An ideal gas with mass density  , pressure p and temperature   has specific internal energy, specific 

Helmholtz free energy, and stress given by 
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where R is the gas constant, vc  is the specific heat capacity (a positive constant), and 0s  is an arbitrary 

constant.  Ideal gases are also characterized by the specific heat at constant pressure p vc c R   and the 

ratio /p vc c  . In addition, heat conduction through an ideal gas is often modeled using Fourier’s law 
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where  is the thermal conductivity (a positive constant). Show that this constitutive model obeys the free 
energy imbalance 
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Consider the first term i
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Consider the second term, 
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Combining, 
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